Boiler

A boiler is a closed vessel in which water or other fluid is heated. The heated or vaporized fluid exits the boiler for use in various processes or heating applications.[1][2]

Contents

Overview

Materials

The pressure vessel in a boiler is usually made of steel (or alloy steel), or historically of wrought iron. Stainless steel is virtually prohibited (by the ASME Boiler Code) for use in wetted parts of modern boilers, but is used often in superheater sections that will not be exposed to liquid boiler water. In live steam models, copper or brass is often used because it is more easily fabricated in smaller size boilers. Historically, copper was often used for fireboxes (particularly for steam locomotives), because of its better formability and higher thermal conductivity; however, in more recent times, the high price of copper often makes this an uneconomic choice and cheaper substitutes (such as steel) are used instead.

For much of the Victorian "age of steam", the only material used for boilermaking was the highest grade of wrought iron, with assembly by rivetting. This iron was often obtained from specialist ironworks, such as at Cleator Moor (UK), noted for the high quality of their rolled plate and its suitability for high-reliability use in critical applications, such as high-pressure boilers. In the 20th century, design practice instead moved towards the use of steel, which is stronger and cheaper, with welded construction, which is quicker and requires less labour.

Cast iron may be used for the heating vessel of domestic water heaters. Although such heaters are usually termed "boilers" in some countries, their purpose is usually to produce hot water, not steam, and so they run at low pressure and try to avoid actual boiling. The brittleness of cast iron makes it impractical for high pressure steam boilers.

Fuel

The source of heat for a boiler is combustion of any of several fuels, such as wood, coal, oil, or natural gas. Electric steam boilers use resistance- or immersion-type heating elements. Nuclear fission is also used as a heat source for generating steam. Heat recovery steam generators (HRSGs) use the heat rejected from other processes such as gas turbines.

Configurations

Boilers can be classified into the following configurations:

Safety

Historically, boilers were a source of many serious injuries and property destruction due to poorly understood engineering principles. Thin and brittle metal shells can rupture, while poorly welded or riveted seams could open up, leading to a violent eruption of the pressurized steam. When water is converted to steam it expands in volume over 1,000 times and travels a down a steam pipes at over 100 kilometres/hr. Because of this steam is a great way of moving energy and heat around a site from a central boiler house to where it is needed, but without the right boiler feed water treatment, a steam-raising plant will suffer from scale formation and corrosion. At best, this increases energy costs and can lead to poor quality steam, reduced efficiency, shorter plant life and an operation which is unreliable. At worst, it can lead to catastrophic failure and loss of life. [3] Collapsed or dislodged boiler tubes could also spray scalding-hot steam and smoke out of the air intake and firing chute, injuring the firemen who loaded coal into the fire chamber. Extremely large boilers providing hundreds of horsepower to operate factories could demolish entire buildings.[4]

A boiler that has a loss of feed water and is permitted to boil dry can be extremely dangerous. If feed water is then sent into the empty boiler, the small cascade of incoming water instantly boils on contact with the superheated metal shell and leads to a violent explosion that cannot be controlled even by safety steam valves. Draining of the boiler could also occur if a leak occurred in the steam supply lines that was larger than the make-up water supply could replace. The Hartford Loop was invented in 1919 by the Hartford Steam Boiler and Insurance Company as a method to help prevent this condition from occurring, and thereby reduce their insurance claims.[5]

Superheated steam boilers

Most boilers produce steam to be used at saturation temperature; that is, saturated steam. Superheated steam boilers vaporize the water and then further heat the steam in a superheater. This provides steam at much higher temperature, but can decrease the overall thermal efficiency of the steam generating plant because the higher steam temperature requires a higher flue gas exhaust temperature. There are several ways to circumvent this problem, typically by providing an economizer that heats the feed water, a combustion air heater in the hot flue gas exhaust path, or both. There are advantages to superheated steam that may, and often will, increase overall efficiency of both steam generation and its utilisation: gains in input temperature to a turbine should outweigh any cost in additional boiler complication and expense. There may also be practical limitations in using wet steam, as entrained condensation droplets will damage turbine blades.

Superheated steam presents unique safety concerns because, if any system component fails and allows steam to escape, the high pressure and temperature can cause serious, instantaneous harm to anyone in its path. Since the escaping steam will initially be completely superheated vapor, detection can be difficult, although the intense heat and sound from such a leak clearly indicates its presence.

Superheater operation is similar to that of the coils on an air conditioning unit, although for a different purpose. The steam piping is directed through the flue gas path in the boiler furnace. The temperature in this area is typically between 1300–1600 degrees Celsius (2372–2912 °F). Some superheaters are radiant type; that is, they absorb heat by radiation. Others are convection type, absorbing heat from a fluid. Some are a combination of the two types. Through either method, the extreme heat in the flue gas path will also heat the superheater steam piping and the steam within. While the temperature of the steam in the superheater rises, the pressure of the steam does not: the turbine or moving pistons offer a continuously expanding space and the pressure remains the same as that of the boiler.[6] Almost all steam superheater system designs remove droplets entrained in the steam to prevent damage to the turbine blading and associated piping.

Supercritical steam generator

Supercritical steam generators are frequently used for the production of electric power. They operate at supercritical pressure. In contrast to a "subcritical boiler", a supercritical steam generator operates at such a high pressure (over 3,200 psi/22.06 MPa or 3,200 psi/220.6 bar) that actual boiling ceases to occur, the boiler has no liquid water - steam separation. There is no generation of steam bubbles within the water, because the pressure is above the critical pressure at which steam bubbles can form. It passes below the critical point as it does work in a high pressure turbine and enters the generator's condenser. This results in slightly less fuel use and therefore less greenhouse gas production. The term "boiler" should not be used for a supercritical pressure steam generator, as no "boiling" actually occurs in this device.

Hydronic boilers

Hydronic boilers are used in generating heat for residential and industrial purposes. They are the typical power plant for central heating systems fitted to houses in northern Europe (where they are commonly combined with domestic water heating), as opposed to the forced-air furnaces or wood burning stoves more common in North America. The hydronic boiler operates by way of heating water/fluid to a preset temperature (or sometimes in the case of single pipe systems, until it boils and turns to steam) and circulating that fluid throughout the home typically by way of radiators, baseboard heaters or through the floors. The fluid can be heated by any means...gas, wood, fuel oil, etc., but in built-up areas where piped gas is available, natural gas is currently the most economical and therefore the usual choice. The fluid is in an enclosed system and circulated throughout by means of a motorized pump. The name "boiler" can be a misnomer in that, except for systems using steam radiators, the water in a properly functioning hydronic boiler never actually boils. Some new systems are fitted with condensing boilers for greater efficiency. These boilers are referred to as condensing boilers because the boilers are designed to operate at lower temperatures than typical hydronic boilers. These lower temperatures would typically damage a boiler because it would cause condensation in the flue gases which ultimately form carbonic acid which corrodes the flue and fireside boiler heating surfaces. Condensing boilers solve this problem by routing the carbonic acid down the drain and by making the flue out of stainless steel or PVC. Although condensing boilers are becoming more popular, they are still less common than other types of hydronic boilers because they are more expensive.

Hydronic systems are being used more and more in new construction in North America for several reasons. Among the reasons are:

Forced-air heating does have some advantages, however. See forced-air heating.

Accessories

Boiler fittings and accessories

Steam accessories

Combustion accessories

Other essential items

Controlling draught

Most boilers now depend on mechanical draught equipment rather than natural draught. This is because natural draught is subject to outside air conditions and temperature of flue gases leaving the furnace, as well as the chimney height. All these factors make proper draught hard to attain and therefore make mechanical draught equipment much more economical.

There are three types of mechanical draught:

See also

References

  1. ^ Frederick M. Steingress (2001). Low Pressure Boilers (4th Edition ed.). American Technical Publishers. ISBN 0-8269-4417-5. 
  2. ^ Frederick M. Steingress, Harold J. Frost and Darryl R. Walker (2003). High Pressure Boilers (3rd Edition ed.). American Technical Publishers. ISBN 0-8269-4300-4. 
  3. ^ Boiler Water Treatment
  4. ^ Journal name: The Locomotive, by Hartford Steam Boiler Inspection and Insurance Company, Published by Hartford Steam Boiler Inspection and Insurance Co., 1911, Item notes: n.s.:v.28 (1910-11), Original from Harvard University, Digitized December 11, 2007 by Google Books, Link to digitized document: http://books.google.com/books?id=-LYSAAAAYAAJ&pg=PA1&source=gbs_selected_pages&cad=0_0#PPA1,M1 – Links to an article on a massive Pabst Brewing Company boiler explosion in 1909 that destroyed a building, and blew parts onto the roof of nearby buildings. This documents also contains a list of day-by-day boiler accidents and accident summaries by year, and discussions of boiler damage claims.
  5. ^ http://www.masterplumbers.com/plumbviews/2001/hartford.asp (Looking for a better source than this.)
  6. ^ Bell, A.M. (1952) Locomotives p 46. Virtue and Company Ltd, London

Further reading